

STORM WATER MANAGEMENT WYSTEAD SECTION 3 LAKE 1

PREPARED: 5-09-16

Project:	Pro	oje	ct:
----------	-----	-----	-----

Wynstead Section Three

Drainage Area Description:

Area tributary Lake #1

Job #: 04M027.003

Initials: GJK

Date: 5/5/2016

Drainage Area:

27.90 Acres

Soil Types:

100 % Type C

Land Use:

Open Space

70.0 %

19.52 Acres

Lake

1.4 %

0.38 Acres

Impervious

28.7 %

8.00 Acres

Composite Runoff Curve Number:

Ground Cover	Soil Type	CN	Soil Type %	Land Use %	
Open Space	В	74	100	70.0	51.77
Lake	В	100	100	1.4	1.36
Impervious	В	B 98		28.7	28.10

Composite CN =

81.2

Time of Concentration:

From Storm Sewer Calculations:

Tc =

0.23 hr

13.90 min

Water Quality Volume

Project:	Wynstead Section 3	Designed By:	GJK	Date:	5/9/16
Job No.:	04M027-003	Checked By:		Date:	
Basin ID:	Lake #1	Revised By:		Date:	

Required Water Quality Volume

 $WQ_v = P C A/12$

Site Drainage Area (A) =	27.90 acres	(To Basin)	WQ _v =	0.959 acre-ft.
Rainfall Depth (P) =	<u>0.75</u> in.	Sediment Storage Allowance Sediment Storage Allowance	_	-25 % -0.24 Ac-ft
Runoff Coefficient (C) =	0.55		Total WQ _v = =	0.719 Ac-ft 31,333 cu.ft.

Water Quality Release Rate

 Q_{wqv} = Total WQ_v/RT

Required Retention Time (RT) 24 hours 0.363 cfs

Provided Retention Time (PT) _____ 25.17 hours

Water Quality Outlet Orifice

Contour Areas

	Elevation ft	Area ft ²	Volume ft ³	Cum. Vol. ft ³	Elevation at V	Storage at Elev
Basin Inv. =	742.00	17266.00	0.00	0.00		
Contour 1 =	744.00	20848.00	38114.00	38114.00	743.64	31332.57
Contour 2 =	746.00	24655.00	45503.00	83617.00		
Contour 3 =	746.50	25642.00	12574.25	96191.25		
Contour 4 =						
Contour 5 =						

$$Q = N C_d A_o (2 g \Delta h)^{1/2}$$

$$C_d = 0.61$$

$$A_o = 0.09 \pi D^2/4 \text{ for circular orifices; } = h * w \text{ for rectangular orifices}$$

$$g = 32.20 \text{ ft/sec}^2$$

$$Q = 0.346 \text{ cfs}$$

Orifice h =
$$\frac{4.000 \text{ inch}}{\text{Number of orifices = N = }}$$
 Orifice w = $\frac{0.00 \text{ inch (= 0 for circular orifice)}}{1}$

 Δh_{avg} = (Elev at V - Basin Inv)/2 - 1/2 h = ______0.66 ft

LAKE #1 OUTLET STRUCTURE SIDE VIEW DETAIL

N.T.S.

Drawing: 04M027-003 CD C3D Scale NTS Drawn by: GJK Checked By:

Issue Date: 05-09-16

WYNSTEAD SECTION THREE

MILITARY SURVEY No. 1546 VILLAGE OF SOUTH LEBANON WARREN COUNTY, OHIO

LAKE #1 OUTLET STRUCTURE - SIDE VIEW

6900 Tylersville Road, Suite A Mason, OH 45040 - 513.336.6600

LAKE #1 OUTLET STRUCTURE TOP VIEW DETAIL

N.T.S.

Drawing:
04M027-003 CD C3D
Scale
NTS
Drawn by:
GJK

Checked By:

Issue Date:

05-09-16

WYNSTEAD SECTION THREE

MILITARY SURVEY No. 1546 VILLAGE OF SOUTH LEBANON WARREN COUNTY, OHIO

LAKE #1 OUTLET STRUCTURE - TOP VIEW

6900 Tylersville Road, Suite A Mason, OH 45040 - 513.336.6600

Pond Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 05 / 20 / 2016

Pond No. 1 - Lake #1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 742.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	742.00	17,266	0	0
2.00	744.00	20,848	38,054	38,054
4.00	746.00	24,655	45,445	83,499
4.50	746.50	25,642	12,572	96,071

Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 20.00 0.00 0.00 0.00 = 42.00 4.00 0.00 0.00 Crest Len (ft) Rise (in) 0.00 0.00 Crest El. (ft) = 743.75 0.00 0.00 0.00 Span (in) = 42.004.00 Weir Coeff. 3.33 3.33 0 = 3.003.33 No. Barrels = 1 1 0 Weir Type Invert El. (ft) = 735.75742.00 0.00 0.00 = Rect ---0.00 0.00 Multi-Stage = Yes Νo Length (ft) = 50.00 0.00 No Nο 0.00 Slope (%) = 0.500.00 n/a N-Value = .013.013 .013 n/a 0.60 0.60 Exfil.(in/hr) = 0.000 (by Contour) Orifice Coeff. = 0.600.60 TW Elev. (ft) = 0.00Multi-Stage = n/aYes No No

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storag	: / Dis	scharge	Table
----------------	---------	---------	-------

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
	oun	••	0.0										
0.00	0	742.00	0.00	0.00			0.00	****					0.000
0.20	3,805	742.20	98.26 ic	0.08 ic			0.00						0.083
0.40	7,611	742.40	98.26 ic	0.20 ic			0.00						0.203
0.60	11,416	742.60	98.26 ic	0.28 ic			0.00						0.277
0.80	15,222	742.80	98.26 ic	0.33 ic			0.00			***			0.334
1.00	19,027	743.00	98.26 ic	0.38 ic			0.00						0.384
1.20	22,832	743.20	98.26 ic	0.43 ic			0.00						0.427
1.40	26,638	743.40	98.26 ic	0.47 ic	****		0.00						0.467
1.60	30,443	743.60	98.26 ic	0.50 ic			0.00						0.503
1.80	34,249	743.80	98.26 ic	0.54 ic			0.67						1.210
2.00	38,054	744.00	98.26 ic	0.57 ic			7.50						8.069
2.20	42,598	744.20	98.26 ic	0.60 ic			18.11						18.71
2.40	47,143	744.40	98.26 ic	0.63 ic			31.44						32.07
2.60	51,688	744.60	98.26 ic	0.66 ic			47.02						47.68
2.80	56,232	744.80	98.26 ic	0.68 ic		***	64.56						65.24
3.00	60,777	745.00	98.26 ic	0.71 ic			83.86						84.57
3.20	65,321	745.20	105.44 ic	0.67 ic			104.77						105.44
3.40	69,866	745.40	120.01 ic	0.46 ic			119.55 s						120.01
3.60	74,410	745.60	124.71 ic	0.39 ic			124.32 s						124.70
3.80	78,955	745.80	128.13 ic	0.34 ic			127.78 s						128.12
4.00	83,499	746.00	130.93 ic	0.30 ic			130.62 s						130.92
4.05	84,756	746.05	131.56 ic	0.29 ic			131.26 s						131.56
4.10	86,014	746.10	132.18 ic	0.28 ic			131.89 s						132.17
4.15	87,271	746.15	132.77 ic	0.28 ic			132.49 s						132.76
4.20	88,528	746.20	133.35 ic	0.27 ic			133.08 s						133.35
4.25	89,785	746.25	133.92 ic	0.26 ic			133.64 s						133.91
4.30	91,043	746.30	134.47 ic	0.26 ic			134.20 s						134.46
4.35	92,300	746.35	135.00 ic	0.25 ic			134.75 s						135.00
4.40	93,557	746.40	135.53 ic	0.24 ic			135.28 s						135.52
4.45	94,814	746.45	136.05 ic	0.24 ic			135.80 s						136.04
4.50	96,071	746.50	136.55 ic	0.23 ic			136.31 s						136.54

Hydrograph Return Period Recap
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

	T								Hydraflow Hydrographs Extension for Aut				·
Hyd. No.	Hydrograph type	Inflow hyd(s)		1	T	Peak Ou	tflow (cfs)		T	T	Hydrograph Description		
	(origin)		1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	·		
1	SCS Runoff		28.45	42.48		60.31	75.01	96.40	115.37	137.61	Area Tributary to Lake #1		
2	Reservoir	1	4.836	22.05		45.03	62.71	86.48	105.47	121.33	Lake #1 Outlet		
						į.							
						:							
								:					
	}												
į									<u> </u>				

Proj. file: 04M027.003 Ponds.gpw

Friday, 05 / 20 / 2016

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 05 / 20 / 2016

Hyd. No. 1

Area Tributary to Lake #1

= SCS Runoff Peak discharge = 28.45 cfsHydrograph type = 724 min Storm frequency = 1 yrsTime to peak Hyd. volume Time interval $= 2 \min$ = 82,295 cuftDrainage area = 27.900 acCurve number = 81.2 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = User Time of conc. (Tc) $= 13.90 \, \text{min}$ = 2.33 inDistribution = Type II Total precip. Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 05 / 20 / 2016

Hyd. No. 2

Lake #1 Outlet

= Reservoir Hydrograph type Peak discharge = 4.836 cfsStorm frequency = 1 yrsTime to peak = 748 min Time interval = 2 min Hyd. volume = 82,193 cuft Max. Elevation Inflow hyd. No. = 1 - Area Tributary to Lake #1 $= 743.91 \, \text{ft}$ Max. Storage = 36,260 cuftReservoir name = Lake #1

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 05 / 20 / 2016

Hyd. No. 1

Area Tributary to Lake #1

Peak discharge = 42.48 cfsHydrograph type = SCS Runoff Storm frequency = 2 yrsTime to peak = 722 min Time interval = 2 min Hyd. volume = 120,394 cuft Drainage area = 27.900 ac Curve number = 81.2 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method = User Time of conc. (Tc) $= 13.90 \, \text{min}$ = 2.86 inDistribution = Type II Total precip. = 484 Storm duration = 24 hrs Shape factor

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 05 / 20 / 2016

Hyd. No. 2

Lake #1 Outlet

Hydrograph type = 22.05 cfs= Reservoir Peak discharge Time to peak Storm frequency = 2 yrs= 732 min Time interval = 2 min Hyd. volume = 120,289 cuftMax. Elevation Inflow hyd. No. = 1 - Area Tributary to Lake #1 = 744.25 ft= Lake #1 Max. Storage = 43,734 cuftReservoir name

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 05 / 20 / 2016

Hyd. No. 1

Area Tributary to Lake #1

Hydrograph type = SCS Runoff Peak discharge = 60.31 cfsStorm frequency = 5 yrsTime to peak = 722 min Time interval = 2 min Hyd. volume = 169,357 cuft Drainage area = 27.900 ac Curve number = 81.2 Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) Tc method = User = 13.90 min Total precip. = 3.49 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 05 / 20 / 2016

Hyd. No. 2

Lake #1 Outlet

Hydrograph type = Reservoir Peak discharge = 45.03 cfsStorm frequency = 5 yrsTime to peak = 728 min Time interval = 2 min Hyd. volume = 169,249 cuft Inflow hyd. No. = 1 - Area Tributary to Lake #1 Max. Elevation = 744.57 ft Max. Storage = Lake #1 = 50,916 cuft Reservoir name

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

= 24 hrs

Friday, 05 / 20 / 2016

Time (min)

= 484

Hyd. No. 1

Storm duration

Area Tributary to Lake #1

Hyd No. 1

Hydrograph type = SCS Runoff Peak discharge = 75.01 cfsStorm frequency = 10 yrsTime to peak = 722 min Time interval = 2 min Hyd. volume = 210,250 cuft Drainage area = 27.900 acCurve number = 81.2Basin Slope Hydraulic length = 0.0 % = 0 ftTime of conc. (Tc) Tc method = User $= 13.90 \, \text{min}$ Total precip. = 3.99 inDistribution = Type II

Shape factor

Area Tributary to Lake #1 Q (cfs) Q (cfs) Hyd. No. 1 -- 10 Year 80.00 00.08 70.00 70.00 60.00 60.00 50.00 50.00 40.00 40.00 30.00 30.00 20.00 20.00 10.00 10.00 0.00 0.00 480 600 1560 0 120 240 360 720 840 960 1080 1200 1320 1440

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 05 / 20 / 2016

Hyd. No. 2

Lake #1 Outlet

Peak discharge Hydrograph type = Reservoir = 62.71 cfsTime to peak Storm frequency = 10 yrs= 728 min Hyd. volume Time interval = 2 min = 210,139 cuftInflow hyd. No. = 1 - Area Tributary to Lake #1 Max. Elevation = 744.78 ftReservoir name = Lake #1 Max. Storage = 55,577 cuft

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 05 / 20 / 2016

Hyd. No. 1

Area Tributary to Lake #1

Hydrograph type= SCS RunoffPeak discharge= 96.40 cfsStorm frequency= 25 yrsTime to peak= 722 minTime interval= 2 minHyd. volume= 270,541 cuftDrainage area= 27.900 acCurve number= 81.2

Tc method = User Time of conc. (Tc) = 13.90 min
Total precip. = 4.70 in Distribution = Type II
Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 05 / 20 / 2016

Hyd. No. 2

Lake #1 Outlet

Hydrograph type = Reservoir Peak discharge = 86.48 cfsStorm frequency = 25 yrsTime to peak = 726 min Time interval = 2 min Hyd. volume = 270,429 cuftInflow hyd. No. = 1 - Area Tributary to Lake #1 Max. Elevation = 745.02 ftReservoir name = Lake #1 Max. Storage = 61,194 cuft

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 05 / 20 / 2016

Hyd. No. 1

Area Tributary to Lake #1

Peak discharge = 115.37 cfs= SCS Runoff Hydrograph type Storm frequency = 50 yrsTime to peak = 722 min Hyd. volume = 324,779 cuftTime interval = 2 min Drainage area = 27.900 acCurve number = 81.2 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method = User Time of conc. (Tc) $= 13.90 \, \text{min}$ = 5.32 inDistribution = Type II Total precip. Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 05 / 20 / 2016

Hyd. No. 2

Lake #1 Outlet

= 105.47 cfsHydrograph type = Reservoir Peak discharge = 50 yrsStorm frequency Time to peak = 726 min Time interval Hyd. volume = 324,667 cuft = 2 min Max. Elevation Inflow hyd. No. = 1 - Area Tributary to Lake #1 $= 745.21 \, \text{ft}$ Max. Storage = 65,332 cuft Reservoir name = Lake #1

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 05 / 20 / 2016

Hyd. No. 1

Area Tributary to Lake #1

Hydrograph type = SCS Runoff Peak discharge = 137.61 cfsStorm frequency = 100 yrsTime to peak = 722 min Time interval Hyd. volume = 389,143 cuft= 2 min Drainage area = 27.900 acCurve number = 81.2 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method = User Time of conc. (Tc) $= 13.90 \, \text{min}$ = 6.04 inDistribution = Type II Total precip. = 484 Storm duration = 24 hrs Shape factor

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Friday, 05 / 20 / 2016

Hyd. No. 2

Lake #1 Outlet

Hydrograph type Storm frequency Time interval Inflow hyd. No.

Reservoir name

= Reservoir = 100 yrs

= Lake #1

= 2 min= 1 - Area Tributary to Lake #1

Time to peak Hyd. volume

Peak discharge

= 121.33 cfs = 726 min

Hyd. volume = 389,031 cuft
Max. Elevation = 745.46 ft
Max. Storage = 71,142 cuft

